## 1.2 Review Questions (p. 27)

d)  $(2.6 \times 10^5) \div (6.5 \times 10^{-2}) =$ 

- 1. Use the steps of the scientific method to design a test for the following hypotheses:
  - a) If a person takes vitamin C daily, then they will get fewer colds.
  - b) If cyclists ride titanium bicycles, then they will win more races.

Complete the following table for the listed observations by checking the appropriate columns.

| Property Observed                 | Chemical | Physical | Qualitative | Quantitative |
|-----------------------------------|----------|----------|-------------|--------------|
| Freezes at 52.0 °C.               |          |          |             |              |
| Dissolves in ethylene glycol.     |          | V/       | 1           |              |
| Fractures into cubic crystals.    |          | V/       |             |              |
| 5.4 moles dissolve in each litre. |          |          |             |              |

Complete the following table for the listed observations by checking the appropriate columns.

| Property Observed                                   | Chemical | Physical | Qualitațive | Quantitative |
|-----------------------------------------------------|----------|----------|-------------|--------------|
| Attracts to a magnet.                               | V        |          |             |              |
| Changes to Br <sub>2</sub> ( <i>l</i> ) at -7.2 °C. |          | 1/       |             | /            |
| Has a density of 4.71 g/mL.                         |          |          |             |              |
| Is a bright orange solid crystal.                   |          | /        | <b>/</b>    |              |

 Convert the following numbers from scientific to expanded notation and viceversa (be sure the scientific notation is expressed correctly).

 Scientific Notation
 Expanded Notation

 3.08 x 10<sup>4</sup>
 30 8 00

 9.6 X 10<sup>2</sup>
 960

 4.75 x 10<sup>-3</sup>
 0.00 475

 4.8 4 X 10<sup>-4</sup>
 0.000 484

 0.0062 x 10<sup>5</sup>
 620



c) 
$$(2.5 \times 8.5) \times 10^{(-3-5)} \Rightarrow 21.25 \times 10^{-8} \Rightarrow (2.13 \times 10^{-7})$$
  
d)  $(2.6 \div 6.5) \times 10^{(5+2)} \Rightarrow 0.40 \times 10^{-7} \Rightarrow (2.13 \times 10^{-7})$ 



a. 
$$4.034 \times 10^{5}$$
 b.  $3.114 \times 10^{-6}$  c.  $26.022 \times 10^{2}$ 
 $\frac{-2.12 \times 10^{4}}{403400}$   $\frac{+2.301 \times 10^{-5}}{0.00002301}$   $\frac{+7.04 \times 10^{-1}}{2602.2}$ 
 $\frac{21200}{38222 \times 10^{3}}$   $\frac{2602.2}{3.322 \times 10^{3}}$   $\frac{2602.904}{3.60226124}$   $\frac{2602.904}{2.602.904}$   $\frac{2602.904}{2.602.904}$  8. Solve the following problems, expressing the answer in scientific notation,

8. Solve the following problems, expressing the answer in scientific notation, without using a calculator. Repeat the questions using a calculator and compare your answers.

a. 
$$2.115 \times 10^{8}$$
 b.  $9.332 \times 10^{-3}$  c.  $68.166 \times 10^{2}$ 

$$\frac{-1.11 \times 10^{7}}{2.00 \times 10^{8}}$$

$$\frac{+6.903 \times 10^{-4}}{0.0006903}$$

$$\frac{+ \times 10^{-1}}{6816.6}$$

$$\frac{+ \times 10^{-1}}{6816.7} \Rightarrow 6.8167 \times 10^{-3}$$

$$0.0100223 \Rightarrow 1.0022 \times 10^{-3}$$

$$\frac{+ \times 10^{-1}}{6816.7} \Rightarrow 6.8167 \times 10^{-3}$$

 Solve each of the following problems without a calculator. Express your answer in correct form scientific notation. Repeat the questions using a calculator and compare.



10. Solve each of the following problems without a calculator. Express your answer in correct form scientific notation. Repeat the questions using a calculator and compare.

a. 
$$(6.4 \times 10^{-6} + 2.0 \times 10^{-7}) \div (2 \times 10^{6} + 3.1 \times 10^{7})$$
  $\frac{6.6 \times 10^{-6}}{3_{\circ}.3 \times 10^{-7}} = \lambda.0 \times 10^{-13}$   
b.  $\frac{3.4 \times 10^{-17} \times 1.5 \times 10^{4}}{1.5 \times 10^{-4}}$   $\frac{5_{\circ}! \times 10^{-13}}{1.5 \times 10^{-4}} = 3.4 \times 10^{-9}$   
c.  $(2 \times 10^{3})^{3} \times [(6.84 \times 10^{3}) \div (3.42 \times 10^{3})]$   $8 \times 10^{9} \times 3 = 1.6 \times 10^{10}$   
d.  $\frac{(3 \times 10^{2})^{3} + (4 \times 10^{3})^{2}}{1 \times 10^{4}}$   $\frac{7 \times 10^{6}}{1 \times 10^{4}} = 7 \times 10^{3}$ 

11. Use the axes provided to plot graphs of mass against volume for a series of metal pieces with the given volumes. Plot all three graphs on the same set of axes with the independent variable (volume in this case) on the x-axis. Use a different colour for each.

| 2.0 mL 17.4 g 5.4 g 42.9 g 8.0 71.7 21.6 171.6 12.0 107.5 32.4 257.4 15.0 134.4 40.5 321.8 19.0 170.2 51.3 407.6 $\frac{180 - 809}{30 - 9 \text{ mL}} = 9 \frac{19}{16} \frac{1}{16} \frac{1}{16}$ | ** 1           |             |                    | 41                                                | TDI di                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|--------------------|---------------------------------------------------|------------------------|
| 8.0 71.7 21.6 171.6 12.0 107.5 32.4 257.4 15.0 134.4 40.5 321.8 19.0 170.2 51.3 407.6  - copper - platinum - qluminum; $\frac{180 - 809}{30 - q \text{ mL}} = \frac{q \cdot 1g/m}{16 - 1 \text{ mL}}$ Aluminum; $\frac{60 - 309}{16 - 1 \text{ mL}} = \frac{3 \cdot 1g/m}{16 - 1 \text{ mL}}$ b. platinum is most dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Volume         | Copper      |                    | Aluminum                                          | Platinum               |
| 12.0 15.0 134.4 40.5 321.8 19.0 170.2 51.3 407.6  - copper - platinum - qluminum  a. Copper $\frac{180 - 809}{30 - 9m} = 9.19/m$ Aluminum; $\frac{60 - 309}{30 - 1m} = 3.09/m$ Platinum; $\frac{340 - 309}{16 - 1m} = 31g/m$ b. platinum is most dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0 mL         |             |                    |                                                   |                        |
| 15.0  134.4  40.5  321.8  19.0  170.2  51.3  407.6  - copper - platinum - qluminum  a. Copper $\frac{180 - 80g}{a0 - q mL} = \frac{q \cdot lg/m}{a0 - q mL}$ Aluminum; $\frac{60 - a0g}{a0 - 1 mL} = \frac{a_1g/m}{16 - 1 mL}$ b. platinum is most dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.0            | 71.7        |                    | 21.6                                              | 171.6                  |
| 15.0  134.4  40.5  321.8  19.0  170.2  51.3  407.6  - copper - platinum - qluminum  a. Copper $\frac{180 - 80g}{a0 - q mL} = \frac{q \cdot lg/m}{a0 - q mL}$ Aluminum; $\frac{60 - a0g}{a0 - 1 mL} = \frac{a_1g/m}{16 - 1 mL}$ b. platinum is most dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.0           | 107.5       |                    | 32.4                                              | 257.4                  |
| 19.0  170.2  51.3  407.6  - copper - platinum  - aluminum  a. Copper $\frac{180 - 80g}{a0 - q mL} = q \cdot \frac{1g}{m}$ Aluminum; $\frac{60 - a0g}{aa - 7 mL} = \frac{a \cdot g}{m}$ Platinum; $\frac{340 - a0g}{16 - 1 mL} = \frac{a1g}{m}$ b. platinum is most dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 134.4       |                    | 40.5                                              | 321.8                  |
| -copper - platinum - qluminum -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |             |                    |                                                   |                        |
| a. Copper $\frac{3}{20} = \frac{3}{40} =$                                                                                                                 |                | 170.2       |                    | 20000                                             | - Platinum             |
| a. Copper $\frac{3}{20} = \frac{3}{40} =$                                                                                                                 |                |             | +                  | = aluminu                                         | im                     |
| Boot Platinum: 340-209 = 319/m  b. platinum is most dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | <del></del> |                    | - que                                             | 180 - 800 - 0 10/ml    |
| Boot Platinum: 340-209 = 319/m  b. platinum is most dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |             |                    | a. Copper                                         | 30 - 9 ml              |
| Boot Platinum: 340-209 = 319/m  b. platinum is most dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del></del>    |             | -                  | <del></del>                                       | 15 350 11              |
| Boot Platinum: 340-209 = 319/m  b. platinum is most dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400            |             | 1111/              | HIT Aluminur                                      | n; 60 - a0 9 = 2.09 lm |
| b. platinum is most dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |             |                    |                                                   | dd - 1 mL              |
| b. platinum is most dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |             | $- \mathcal{X} + $ | Platinum                                          | 3 340 - 209 - 21 a/a/  |
| b. platinum is most dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del>   </del> |             | *                  | <del>                                      </del> | 16 - 1 mL = alg/       |
| 100 Volume (mb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300            |             |                    | <del>                                      </del> | •                      |
| 100 Volume (mb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |             |                    | h plating                                         | m is most dense        |
| Volume (mb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del></del>    | +++         |                    | D. (                                              |                        |
| Volume (mb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |             |                    |                                                   |                        |
| Volume (mb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200            |             |                    |                                                   |                        |
| Volume (mb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |             | *                  |                                                   |                        |
| Volume (mb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | <del></del> |                    | <del>                                     </del>  |                        |
| Volume (mb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100            | 1           |                    |                                                   |                        |
| Volume (1916)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (00            |             |                    |                                                   |                        |
| Volume (mt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |             |                    |                                                   |                        |
| Volume (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HX             | *-          | * 1                |                                                   |                        |
| O = 10 15 30 voicine (133.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44-            |             |                    | Value (m)                                         |                        |
| . 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 5            | 10          | 15                 | 30 Actome (1817)                                  |                        |

a) Determine the constant for each metal:

Mass (g)

- b) The constant represents each metal's density. Which metal is most dense?
- 12. Use the grid provided to plot two separate graphs, a and b, for each the following sets of data. Be sure to draw a *smooth curve* through the points. Indicate the type of relationship represented by each graph.

| Initial Rate (y) | Concentration | Volume (y) | Pressure |
|------------------|---------------|------------|----------|
| 0.003 mol/L/s    | 0.05 mol/L    | 5.0 L      | 454 kPa  |
| 0.012            | 0.10          | 10.0       | 227      |
| 0.048            | 0.20          | 15.0       | 151      |
| 0.075            | 0.25          | 20.0       | 113      |
| 0.108            | 0.30          | 25.0       | 91       |
| 0.192            | 0.40          | 30.0       | 76       |



| Annue of Distilled Water Distillation Line :: |  |
|-----------------------------------------------|--|
| 0.8 L 0.4 h                                   |  |
| 1.6 0.8                                       |  |
| 5.0 2.5                                       |  |
| 7.2 3.6                                       |  |
| 9.8 4.9                                       |  |

- a) Plot this data on your own piece of graph paper. Where should time be plotted? \* twis
- b) Determine the constant for your graph. Show all work on the graph.
- c) Determine the relationship between volume and time. Wear V=2.00
- d) Assume the still was left on overnight. What volume of water would be collected if a period of fourteen hours passed? V=3,0(14)=3 % L
- e) How long would it take to produce 12.5 L of water with this still?

