STRONG \& WEAK ACIDS/BASES

Strength of an acid or a base

- determined by \% ionization
- is NOT determined by the concentration

Strong Acid
-100% ionization in water solution

- there won't be any undissociated acids left
- completely dissociated
- the reaction only goes one way
- single arrow (goes to completion)
$\mathrm{HCl}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})}$
What is the concentration of HCl and $\mathrm{H}_{3} \mathrm{O}^{+}$in 1.0 M HCl ?
$[\mathrm{HCl}]=0.0 \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \mathrm{M}$

Weak Acid

- less than 100% ionization
- there will be undissociated acids in the solution
- most of the molecules don't ionize
- reverse reactions do occur
- double arrow

$$
\mathrm{HF}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrows \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{F}_{(\mathrm{aq})}^{-}
$$

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is only a small fraction of [HF]

Strong Base

- ionizes (dissociates) 100% in solution
- $\mathrm{OH}^{-}, \mathrm{O}^{2-}, \mathrm{NH}_{2}^{-}$
- any substance which dissociates completely to produce $\mathrm{OH}^{-}, \mathrm{O}^{2-}$, or NH_{2}^{-}is a Strong Base
- Alkali metal hydroxides
- Alkaline earth hydroxides (even though $\mathrm{Sr}(\mathrm{OH})_{2}$ is the only one called "soluble" on the Solubility Table.)

Weak Bases

- Found above OH - on right side of the acid table
concentration vs. strength
How would you describe 1.0 M HCl ?
This is a strong, and diluted acid.
How would you describe 17.4M HF?
This is a concentrated, and weak acid.
Weak \& Strong
\rightarrow refers to \% ionization
Concentrated \& Diluted
\rightarrow refers to the moles of acid dissolved per liter.
Levelling effect for ACIDS
What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in $1.0 \mathrm{M} \mathrm{H}_{3} \mathrm{O}^{+}$? \qquad
What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in $1.0 \mathrm{M} \mathrm{HNO}_{3}$?
What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in 1.0 M HCl ? \qquad

Although HClO_{4} is above HCl on the chart, it is no more acidic than HCl in a water solution.
$\mathrm{H}_{3} \mathrm{O}^{+}$is the STRONGEST ACID that can exist in aqueous solution because all strong acids will dissociate to from $\mathrm{H}_{3} \mathrm{O}^{+}$.

HW
Read p112-114 and 121-125
p125 \#21-27

