Average Reaction Rate Calculations

1-	$C_3H_{8(g)}$	+	5 O _{2(g)}	\rightarrow	3 CO _{2(g)}	+	4 H ₂ O _(g)
	3.00		15.0		9.00		12.0
	mol/s		mol/s		mol/s		mol/s

- 2- ? mol H₂/min = (245 L/min) (1 mol/24.5 L) = 10.0 mol/min Al Rate = 6.66 mol/min HNO₃ Rate = 20.0 mol/min
- H₂ Rate = 10.0 mol/min Al(NO₃)₃ Rate = 6.66 mol/min
- 3- ? mol NaOH/s = (176 g / 15 s) (1 mol / 40.0 g) = 0.29 mol/s NaOH Rate = 12 g/s H₂SO₄ Rate = 15 g/s Na₂SO₄ Rate = 21 g/s H₂O Rate = 5.2 g/s

4- ? L N₂/min = (22.4 L/mol) (5.00 mol/min) = 112 L N₂/min Since all gases are at STP, Avogadro's hypothesis applies.

3 F _{2(g)}	+	2 NH _{3(g)}	\rightarrow	N _{2(g)}	+	6 HF _(g)
336		224		112		672
L/min		L/min		L/min		L/min

5- Watch for excess stoichiometry! Use only amounts of chemicals that have reacted!

 Fe_2S_3 Rate = 2.50 g/s HCl Rate = 2.63 g/s FeCl_3 Rate = 3.89 g/s H_2S Rate = 1.23 g/s